Material Science Research Papers/Topics

Optoelectronic property refinement of FASnI3 films for photovoltaic application

Abstract: Tin (Sn) is a promising substitute for lead (Pb) in organic–inorganic hybrid halide perovskite-photovoltaic devices, but it is prone to delivering low power conversion efficiencies (PCEs) due to the poor quality of Sn-perovskite films. In this work, anilinium hypophosphite (AHP) co-additive is used to fabricate high-quality FASnI3 (FA+: formamidinium) perovskite films with suppressed phase-segregation and prolonged charge carrier lifetime. Perovskite films containing 0.05 M AHP a...

Production and Evaluation of the Impact Strength of Snail Shell Reinforced Epoxy Composite

Particulate-filled polymer composites are becoming quite attractive because of their low cost and wide application. Nowadays shells of arthropods and mollusks are widely used as reinforced materials due to their availability and impact mechanical properties. This study focused on theproduction and evaluation of impact strength of snail shell reinforced epoxy composite and as well given concrete information and recommendation on usage with respect to appropriate filler concentration an...

Synthesis and Characterization of Ti–Fe Oxide Nanomaterials: Adsorption–Degradation of Methyl Orange Dye

Organic solvent-free impregnation method was used to synthesize titanium-iron oxides (TIOs) nanomaterial. The physical properties of synthesized TIOs materials were characterized by XRD, SEM–EDX, BET, UV–Vis, and FTIR analytical techniques. The appearance of iron oxide (IO) on SEM image, XRD, and EDX spectra, the redshift on UV–Vis spectra of TIO compared to titanium oxide (TO), and intensity reduction in FTIR spectra proves the good impregnation of IO in TO lattice. The passing of t...

Formation of Metastable Calcite-type Barium Carbonate During Low-temperature Decomposition of (Ba,Ti)- Precursor Complexes

Solid State Sciences 9 (2007) 303, doi:10.1016/j.solidstatesciences.2007.02.003, Abstract:: (Ba,Ti)-precursor complexes, important for the production of advanced BaTiO3 perovskitetype materials, undergo structural transformations and complex reactions during their thermal decomposition. Based on XRD phase analysis, combined with Rietveld refinement of crystal structure data, and on IR analysis, the intermediate formation of calcite-type BaCO3 is evidenced, which can be explained by the stabi...

Barium Titanate via Thermal Decomposition of Ba,Tiprecursor Complexes: The Nature of the Intermediate Phases

Solid State Sciences 9 (2007) 21, doi:10.1016/j.solidstatesciences.2006.09.004, Abstract:: The thermal decomposition of Ba,Ti-precursor complexes, containing organic ligands and suitable for the single-source preparation of nanocrystalline BaTiO3, leads firstly to the segregation of specific Ba-rich and Ti-rich phases. Quantitative electron energy lossspectroscopy and powder X-ray diffraction data indicated that the (i) Ba-rich phase is a BaOstabilised variant of the calcite-type high tempera...

Semiconducting Properties of Ge-BaSnO3

Journal of Alloys and Compounds 506 (2010) 678–682, doi:10.1016/j.jallcom.2010.07.041, Abstract:: The electrical and optical properties of Ge-doped BaSnO3 ceramics sintered at various temperatures have been investigated to determine their semiconductor behavior. The electrical conductivity of Ge-doped BaSnO3 samples increases with increase in temperature, confirming that the samples exhibit a semiconductor behavior. A maximum conductivity value of 6.31 × 10−9 S/cm was observed for the sa...

Thermoanalytical, Optical, and Magnetic Investigations on Nanocrystalline Li0.5Fe2.5O4 and Resulting Ceramics Prepared by a Starch-based Soft-chemistry Synthesis

Journal of Solid State Chemistry 287 (2020) 12138. DOI: 10.1016/j.jssc.2020.121380 Abstract: Nanocrystalline Li0.5Fe2.5O4 was prepared by a starch-based soft-chemistry synthesis. Calcining of the (LiFe)-gel between 350 and 1000 °C results in Li0.5Fe2.5O4 powders with crystallite sizes from 13 to 141 nm and specific surface areas between 35 and 7.1 m2 g-1. XRD investigations reveal the formation of ordered Li0.5Fe2.5O4. Sintering between 1050 and 1250 °C leads to ceramics with relative den...

BaGeO3 as Sintering Additive for BaTiO3-MgFe2O4 Composite Ceramics

RSC Adv., 2015, 5, 71491, DOI: 10.1039/c5ra12312g, Abstract:: BaTiO3-MgFe2O4 composites (30 wt.% MgFe2O4) with a small addition of BaGeO3 as a sintering additive were synthesized by a one-pot Pechini-like sol-gel process. Nano-crystalline composite powders with a crystallite size of about 10 nm were obtained after reaction at 700 °C for 1 h. Magnetic investigations suggest that the nano-powder is in its superparamagnetic state at room temperature. The addition of BaGeO3 leads to an improved...

Investigation of the Effect of the Addition of Petroleum Waste to Interlocking Bricks Constituent

ABSTRACT Incinerator ash was investigated for its potential use as a replacement for sand and cement in concrete interlocking bricks. The physical characteristics of the raw materials were examined. Two sets of mixes were prepared. For the first set, sand and water quantities were fixed while incinerator ash was used at 0% to 100% replacement by weight for cement in steps of 10%. In the second set, incinerator ash was used at 0% to 100% replacement by weight for sand while cement and water q...

Analysis and Mechanical Performance of Stone Dust Reinforced Al (6063)

Abstract This research technically aims at utilizing stone dust as reinforcement to check the mechanical properties of Al(6063) with different weight ratio of the reinforcement. The alloy consisting of 0, 2, 6 and 10 wt% of the reinforcements were produced using double stir casting method. Evaluation of the microstructure, percentage porosity check, measurement of density and mechanical properties of the composites produced were used to check the performance levels of the composite produced. ...

Dependence of open circuit voltage in protocrystalline Si:H solar cells on carrier recombination in p/i interface and bulk regions

Contribution of carrier recombination from the p/i interface regions and the bulk to the dark current–voltage (JD–V) and short-circuit current–open-circuit voltage (Jsc–Voc) characteristics of hydrogenated amorphous-silicon (a-Si:H) p–i–n and n–i–p solar cells have been separated, identified, and quantified. Results are presented and discussed here which show that a maximum 1 sun Voc for a given bulk material can be validly extrapolated from bulk dominated Jsc–Voc characteri...

Quantitative Correlation of High Quality a-Si:H p-i-n Solar Cell Characteristics with Properties of the Bulk and p/i Interface Region

Studies have been carried out on high quality hydrogenated amorphous silicon (a-Si:H) p-i-n solar cells with protocrystalline i-layers to establish the nature of p/i interfaces and to quantify their contributions to various solar cell characteristics. The p-a-SiC:H,B/i-a-Si:H/n-μcSi:H,P cell structures used had the a-Si:H i-layers deposited from hydrogen diluted silane with R≡[H2 ]/[SiH4]=10. The high quality p/i interface regions obtained with R=10, indicated by the high and stable open c...

The Role of Phase Transitions in Protocrystalline Si:H on the Performance their of Solar Cells

A systematic study has been carried out to quantify the effect of microcrystallite nucleation in the intrinsic layer of protocrystalline Si:H p-i-n solar cells prepared by rf plasma enhanced chemical vapor deposition (PECVD). Real-time spectroscopic ellipsometry (RTSE) results that have previously identified the transitions from amorphous to microcrystalline phase were confirmed with atomic force microscopy (AFM) images. The effects of the phase transitions in the bulk intrinsic layer, as wel...

Evolution of the Mobility Gap with Thickness in Hydrogen-Diluted Intrinsic Si:H Materials in the Phase Transition Region and Its Effect on p-i-n Solar Cell Characteristics

Insights into the growth processes and evolution of microstructure in intrinsic hydrogenated silicon (Si:H) films obtained from real-time spectroscopic ellipsometry (RTSE) are extended to the characterization of the optoelectronic properties of the corresponding solar cells. To assess the effects of transition regions from the amorphous to mixed microcrystalline phases, cell structures with and without such regions at different depths in the i-layer from the p-contact have been investigated. ...

Progress in Amorphous Silicon Based Solar Cell Technology

As the negative environmental effects of the current use of non-renewable energy sources have become apparent, hydrogenated amorphous silicon (a-Si:H) solar cell technology has advanced to provide a means of powering a future sustainable society. Over the last 25 years, a-Si:H solar cell technology has matured to a stage where there is currently a production of 30 MWpeak/year; and this production capacity continues to increase. The progress is due to the continuous advances made in new materi...


1 - 15 Of 98 Results