The capabilities of the proposed nonlocal beam models in the companion paper in capturing the critical velocity of a moving nanoparticle as well as the dynamic response of double-walled carbon nanotubes (DWCNTs) under a moving nanoparticle are scrutinized in some detail. The role of the small-scale effect parameter, slenderness of DWCNTs and velocity of the moving nanoparticle on dynamic deflections and nonlocal bending moments of the innermost and outermost tubes as well as their maximum val...
The current work suggests mathematical models for the vibration of double-walled carbon nanotubes (DWCNTs) subjected to a moving nanoparticle by using nonlocal classical and shear deformable beam theories. The van der Waals interaction forces between atoms of the innermost and outermost tubes are modeled by an elastic layer. The equations of motion are derived for the nonlocal double body Euler–Bernoulli, Timoshenko and higher-order beams connected by a flexible layer under excitation of a ...
The free longitudinal vibration of tapered nanowires is investigated in the context of nonlocal continuum theory. The problem is studied for the nanowires with linearly varied radii under fixed–fixed and fixed–free boundary conditions. In order to assess the problem in a more general form, a perturbation technique is proposed based on the Fredholm alternative theorem. The natural frequencies, corresponding mode shapes, and phase velocities of the tapered nanowires are derived analytically...
A single-walled nanotube structure embedded in an elastic matrix is simulated by the nonlocal Euler–Bernoulli, Timoshenko, and higher order beams. The beams are assumed to be elastically supported and attached to continuous lateral and rotational springs to take into account the effects of the surrounding matrix. The discrete equations of motion associated with free transverse vibration of each model are established in the context of the nonlocal continuum mechanics of Eringen using Hamilto...
Dynamic response of multispan viscoelastic thin beams subjected to a moving mass is studied by an efficient numerical method in some detail. To this end, the unknown parameters of the problem are discretized in spatial domain using generalized moving least square method (GMLSM) and then, discrete equations of motion based on Lagrange’s equation are obtained. Maximum deflection and bending moments are considered as the important design parameters. The design parameter spectra in terms of mas...
Dynamic analysis of nanotube structures under excitation of a moving nanoparticle is carried out using nonlocal continuum theory of Eringen. To this end, the nanotube structure is modeled by an equivalent continuum structure (ECS) according to the nonlocal Euler–Bernoulli, Timoshenko and higher order beam theories. The nondimensional equations of motion of the nonlocal beams acted upon by a moving nanoparticle are then established. Analytical solutions of the problem are presented for simpl...
Single-walled carbon nanotubes (SWCNTs) can be promising delivery nanodevices for a diverse range of applications, however, little is known about their dynamical interactions with moving nanoscale particles. In this paper, dynamic response of a SWCNT subjected to a moving nanoparticle is examined in the framework of the nonlocal continuum theory of Eringen. The inertial effects of the moving nanoparticle and the existing friction between the nanoparticle surface and the inner surface of the S...
In this paper, a comprehensive assessment of design parameters for various beam theories subjected to a moving mass is investigated under different boundary conditions. The design parameters are adopted as the maximum dynamic deflection and bending moment of the beam. To this end, discrete equations of motion for classical Euler–Bernoulli, Timoshenko and higher-order beams under a moving mass are derived based on Hamilton's principle. The reproducing kernel particle method (RKPM) and extend...
Wind and solar resources are diluted and intermittent on the earth; their combination allowed increasing their availability and stability. At great scale, the use of Solar Chimney Power Plant (SCPP) technique constitutes a promising alternative to fossil fuel for generating electrical power particularly in rich regions of natural resources such as solar, wind, terrain, built material, water…etc.). Recently, various research works investigate the design and optimization of thesesystems ...
The majority of U.S. drivers do not consistently monitor the tire pressures in their vehicles. The 2000 TREAD Act, which requires automakers to gradually provide tire pressure monitoring systems for vehicles sold in the U.S. will correct this problem for new vehicles. This law does not impact the problem in previously deployed vehicles, which have a turnover time of 20 years. A solution is provided here to address under-inflated tires on the current 220 million vehicles and the concomitant wa...
The technological evolution of the 3-D printer, widespread internet access and inexpensive computing has made a new means of open design capable of accelerating self-directed sustainable development. This study critically examines how open source 3-D printers, such as the RepRap and Fab@home, enable the use of designs in the public domain to fabricate open source appropriate technology (OSAT), which are easily and economically made from readily available resources by local communities to meet...
The research was undertaken to ascertain the level and ingress of corrosion in carbon steel C-1040.
For the first time, low-cost open-source 3-D printing provides the potential for distributed manufacturing at the household scale of customized, high-value, and complex products. To explore the potential of this type of ultra-distributed manufacturing, which has been shown to reduce environmental impact compared to conventional manufacturing, this paper presents a case study of a 3-D printable parametric design for recreational vehicle (RV) solar photovoltaic (PV) racking systems. The design ...
The purpose of this paper is to provide a technical and economic evaluation of the value of the RepRap as an entry-level 3-D printer in the developing world and provide a cost effective solar photovoltaic (PV) racking solution to better serve the developing world and aid in the acceleration of their economic and socioeconomic growth. A customizable open-source PV racking concept is designed, prototyped for three types of modules, constructed into systems, and outdoor tested under extreme cond...
Through reduced 3-D printer cost, increased usability, and greater material selection, additive manufacturing has transitioned from business manufacturing to the average prosumer. This study serves as a representative model for the potential future of 3-D printing in the average American household by employing a printer operator who was relatively unfamiliar with 3-D printing and the 3-D design files of common items normally purchased by the average consumer. Twenty-six items were printed in ...