Image Calibration with Spatial Transformer Network

Subscribe to access this work and thousands more

In this article\footnote{https://debuggercafe.com/reducing-image-distortion-using-spatial-transformer-network/}, we will learn how we can reduce distortion in images using the Spatial Transformer Network (STN) using the PyTorch deep learning library.

Figure 1 shows the results of applying STN to the distorted MNIST dataset. After applying STN to the distorted images, we can see that the images spatially more plausible and readable.

If you are new to the topic of Spatial Transformer Networks, then I highly recommend that you read my previous article. You will get an introduction to Spatial Transformer Networks with all the details about the network’s architecture as well. You will also get hands-on experience by applying STNs on the CIFAR10 images and visualizing the results yourself.

Subscribe to access this work and thousands more
Save
Need help with your academic research project/paper, technical or creative writing? Hire our expert researchers and writers. Click Here to Submit a Writing Request
Overall Rating

0

5 Star
(0)
4 Star
(0)
3 Star
(0)
2 Star
(0)
1 Star
(0)
APA

Dryad, G. (2021). Image Calibration with Spatial Transformer Network. Afribary. Retrieved from https://afribary.com/works/image-calibration-with-spatial-transformer-network

MLA 8th

Dryad, George "Image Calibration with Spatial Transformer Network" Afribary. Afribary, 27 Nov. 2021, https://afribary.com/works/image-calibration-with-spatial-transformer-network. Accessed 07 Aug. 2022.

MLA7

Dryad, George . "Image Calibration with Spatial Transformer Network". Afribary, Afribary, 27 Nov. 2021. Web. 07 Aug. 2022. < https://afribary.com/works/image-calibration-with-spatial-transformer-network >.

Chicago

Dryad, George . "Image Calibration with Spatial Transformer Network" Afribary (2021). Accessed August 07, 2022. https://afribary.com/works/image-calibration-with-spatial-transformer-network