Power System Analysis Project - Vedad Musovic

This paper presents a comprehensive analysis of power flow and fault scenarios in a complex power system configuration consisting of generators, transformers, transmission lines, buses, and loads. Utilizing MATLAB's Power System Analysis Toolbox (PSAT) and employing the Newton-Rhapson Method, power flow calculations were conducted to assess system performance under normal operating conditions. Subsequently, fault analyses, including Double Line-To-Ground Fault (DLG) and Three-Phase Fault (3φ), were performed to evaluate system resilience during abnormal conditions. The study employs symmetrical components theory to understand unbalanced three-phase systems and their effects on system behavior. Simulation using Simulink facilitated dynamic investigations, revealing transient responses post-fault. Results demonstrate the system's ability to recover gradually from faults and highlight the importance of comprehensive fault analysis for ensuring system reliability and safety. This study underscores the significance of simulation tools in enhancing understanding and resilience in power system operation.

Overall Rating

0

5 Star
(0)
4 Star
(0)
3 Star
(0)
2 Star
(0)
1 Star
(0)
APA

Musovic, V. (2024). Power System Analysis Project - Vedad Musovic. Afribary. Retrieved from https://afribary.com/works/power-system-analysis-project-vedad-musovic

MLA 8th

Musovic, Vedad "Power System Analysis Project - Vedad Musovic" Afribary. Afribary, 05 Apr. 2024, https://afribary.com/works/power-system-analysis-project-vedad-musovic. Accessed 17 Nov. 2024.

MLA7

Musovic, Vedad . "Power System Analysis Project - Vedad Musovic". Afribary, Afribary, 05 Apr. 2024. Web. 17 Nov. 2024. < https://afribary.com/works/power-system-analysis-project-vedad-musovic >.

Chicago

Musovic, Vedad . "Power System Analysis Project - Vedad Musovic" Afribary (2024). Accessed November 17, 2024. https://afribary.com/works/power-system-analysis-project-vedad-musovic

Document Details
Field: Electrical Electronics Engineering Type: Paper 53 PAGES (8439 WORDS) (pdf)