Modeling and Simulation of a Standalone Photovoltaic System

Subscribe to access this work and thousands more

ABSTRACT 

The increase in hazardous gaseous emission from the conventional source of energy has motivated many scientists to research on the alternate sources of energy which is cleaner. The chief source of renewable energy is the solar energy. The cleanness of this form of energy source motivated this research work. In this work, Modeling and Simulation of a Standalone Photovoltaic System aimed at increasing the efficiency of solar array system was developed. This work was undertaken to develop a clean photovoltaic technology that will provide sustainable energy supply and bring solutions to the environmental pollution that is always associated with the conventional energy sources. The system is intended to be an environmentally friendly solution since it tries maximizing the use of renewable energy source. This work involves the development of a PV model using a single diode model. The developed model was further approximated to obtain the simulation model based on the ideal operating condition of a diode. In this work, hundred cells were used to estimate the maximum power of the developed system using MATLAB computer simulation. The simulation result showed a maximum power of 1.2KW using one hundred cells.



TABLE OF CONTENT

TITLE PAGE - - - - - - - - - i

APPROVAL PAGE - - - - - - - - - - ii

CERTIFICATION - - - - - - - - iii

DECLARATION - - - - - - - - iv

DEDICATION - - - - - - --- v

ACKNOWLEDGEMENT - - - - - - - - vi

ABSTRACT - - - - - - - - - vii

TABLE OF CONTENT - - - - - - - - - viii

LIST OF FIGURES - - - -- - - - xii

LIST OF TABLES - - - - - - -- xiii

CHAPTER ONE: INTRODUCTION

1.1. Background of the Study - - - - - - - - - 1

1.2. Statement of the Problem - - - - - - - - - 4

1.3. Objectives - - - - - - - - - 5

1.4. Scope of the study - - - - - - - - - 5

1.5. Significance of Study - - - - - - - - - 5

1.6. Proposed Method - - - - - - - - - 6

1.7. Plan of Thesis - - - - - - - - - 6

CHAPTER TWO: LITERATURE REVIEW

2.1. Introductory to renewable energy - - - - - - - - - 7

2.1.1. Renewable energy forms - - - - - - - - 7

2.1.1.1. Wind energy - - - - - - - - 8

2.1.1.2. Geothermal energy - - - - - - - - 8

2.1.1.3. Hydroelectric energy - - - - - - - - 9

2.1.1.4. Solar energy - - - - - - - - 10

2.2. Evolution of photovoltaic system - - - - - - - - 11

2.2.1. Mid- 1990s to early 2010 - - - - -- - - 12

2.2.2. Current status - - - - -- - - 13

2.2.3. Forecasts - - - - - - - - 13

2.3. Formation of photovoltaic cells - - - - - - - - 13

2.4. Photovoltaic system - - - - - - - - 16

2.4.1. Kinds of solar PV system - - -- - -- - 17

2.4.1.1. Single axis PV solar trackers - - - - - - - 18

2.4.1.2. Double axis solar trackers - - - - - - - 18

2.5. Components of PV system - - - - - - - 18

2.6. PV system design - - - - - - -- 19

2.6.1. Grid connected PV system - - - - - - -- 19

2.6.2. Off-grid PV system - - - - - - -- 19

2.6.3. PV system component for off-grid system - - - - - - -- 19

2.7. PV materials and their conversion efficiency - - - - - - -- 20

2.8. PV cell - - - - - - - - - 20

2.9. PV module arrangement - - - - -- - - 21

2.10. Stand-alone photovoltaic system - - - - - - -- 21

2.10.1. Application of stand-alone - - - - - - -- 23

2.10.2. Future stand-alone application - - - - - - -- 23

2.10.3. Component models for stand-alone PV system - - - - - - -- 24

2.11. Working of PV array -----------25

2.12. Solar Module Modeling - - -- - - -- 26

2.13. Method of improving photovoltaic efficiency - - - - - - -- 28

2.13.1. PV solar trackers system - - - -- - --- 28

2.13.2. MPPT techniques - - - - - - -- 31

2.13.2.1. Conventional method - - - - - - -- 31

2.14. DC-DC converter - - - - - - -- 32

2.14.1. Buck converter - - - - - - -- 32

2.14.2. Boost converter - - - - - - -- 33

2.14.3. Buck-Boost converter - - - - - - 34

2.16. Review of related work - - - - - - - - 35

2.17. Proposed research - - - - - - - - 40

CHAPTER THREE: RESEARCH METHODOLOGY

3.1. Introduction - - - - - - - - - 41

3.2. Mathematical modeling of PV cell - - - - - - - - - 41

3.3. Assumption and approximation - - - - - - - - 44

3.4. Estimation of maximum parameters - - - - - - - - 44

CHAPTER FOUR: RESULTS AND DISCUSSION

4.1. Introduction - - - - - - - - - 46

4.2. Simulation Parameter - - - - - - - - - 46

4.3. Simulation Result - - - - - - - - - 47

CHAPTER FIVE: RECOMMENDATION AND CONCLUSION

5.1. Summary - - - - - - - - - 54

5.2. Achievement - - - - - - - - - 54

5.3. Recommendation - - - - - - - - - 54

5.4. Conclusion - - - - - - - - - 55

REFERENCES - - - - - - - - - 56

APPENDIXES

Appendix A PV Trackers Design - - - -- -- - 63

Appendix B MATLAB Code - - -- - - -- 64

Subscribe to access this work and thousands more
Save
Overall Rating

0

5 Star
(0)
4 Star
(0)
3 Star
(0)
2 Star
(0)
1 Star
(0)
APA

Consults, E. & NNABUIKE, E (2022). Modeling and Simulation of a Standalone Photovoltaic System. Afribary. Retrieved from https://afribary.com/works/modeling-and-simulation-of-a-standalone-photovoltaic-system

MLA 8th

Consults, Education, and EZUKWOKE NNABUIKE "Modeling and Simulation of a Standalone Photovoltaic System" Afribary. Afribary, 10 Nov. 2022, https://afribary.com/works/modeling-and-simulation-of-a-standalone-photovoltaic-system. Accessed 07 Dec. 2022.

MLA7

Consults, Education, and EZUKWOKE NNABUIKE . "Modeling and Simulation of a Standalone Photovoltaic System". Afribary, Afribary, 10 Nov. 2022. Web. 07 Dec. 2022. < https://afribary.com/works/modeling-and-simulation-of-a-standalone-photovoltaic-system >.

Chicago

Consults, Education and NNABUIKE, EZUKWOKE . "Modeling and Simulation of a Standalone Photovoltaic System" Afribary (2022). Accessed December 07, 2022. https://afribary.com/works/modeling-and-simulation-of-a-standalone-photovoltaic-system