Biomedical Engineering Research Papers/Topics

A survey in the different designs and control systems of powered exoskeleton for lower extremities

Abstract: In this paper, previous studies in powered exoskeleton and their contributions in the field of robotics technology are presented, together with their corresponding control system. Specific problems and issues that were encountered and the solutions made to resolve the problems will be discussed. Gait cycle analysis and human body dynamic model will also be covered in the study to understand the biomechanics and the dynamics behind human walking.

Electroosmosis modulated peristaltic biorheological flow through an asymmetric microchannel: mathematical model

Abstract: A theoretical study is presented of peristaltic hydrodynamics of an aqueous electrolytic non-Newtonian Jeffrey bio-rheological fluid through an asymmetric microchannel under an applied axial electric field. An analytical approach is adopted to obtain the closed form solution for velocity, volumetric flow, pressure difference and stream function. The analysis is also restricted under the low Reynolds number assumption (Stokes flow) and lubrication theory approximations (large wavele...

Magnetic field effect on a fractionalized blood flow model in the presence of magnetic particles and thermal radiations

Abstract: The presence of magnetic particles is considered in a magneto-hydrodynamic blood flow through a circular cylinder. The fluid inside the tube is acted by an oscillating pressure gradient and an external constant magnetic field. The blood temperature is assumed to change with the blood and particle velocities, and the whole study is based on a mathematical model that includes Caputo fractional-order derivatives. Solutions for the particle and blood velocities, and blood temperature d...

The Need for Health Informatics (HI) in Enhancing Botswana Health System Surveillance: A Case Study of Botswana Health Posts

Abstract: Technology never ceases to amaze. Innovative health care technologies, treatments, medications and procedures are being developed quickly, and all health practitioners of various backgrounds are expected to integrate them into their daily practices, assimilating both old and new knowledge, applying it to their patients, retaining information about each individual patient including being able to communicate quickly with them. Achieving all this in the past has been difficult, due to...

Non-invasive smart implants in healthcare: Redefining healthcare services delivery through sensors and emerging digital health technologies

Abstract: The adoption of non-invasive smart implants is inevitable due to recent technological advancements in smart implants and the increasing demand to provide pervasive and personalized care. The integration of non-invasive smart implants presents unprecedented opportunities for effective disease prevention, real-time health data collection, early detection of diseases, real-time monitoring of chronic diseases, virtual patient care, patient tailored treatment, and minimally invasive man...

Sweat sensors in the smart wearables era - A Review

In recent years, there has been significant interest in developing wearable devices to mimic the integrated sensing of life forms, which enhances their performance and survival capabilities. Progress in the development of physical sensors and wearable electronics has been promising, leading to numerous consumer products that measure activity, posture, heart rate, respiration rate, and blood oxygen level. Despite the challenges in retrieving and processing bodily fluids, wearable chemical sens...

Effect of Magnetic field on Micro-organisms

  This study uses the model organism, C. elegans, to investigate its sensitivity and response to static magnetic fields. Wild-type C. elegans are put into microfluidic channels and exposed to permanent magnets for five cycles of thirty-second time intervals at field strengths ranging from 5 milli Tesla to 120 milli Tesla. Recorded and analyzed with custom software, the results of the worm's movement - the average velocity, turning and curling percentage - were compared to control experiments...

Worm Egg Counting using Machine learning

To evaluate the level of infestation of the soybean cyst nematode (SCN), Heterodera glycines, in the field, egg population densities are determined from soil samples. Sucrose centrifugation is a common technique for separating debris from the extracted SCN eggs. We have developed a procedure, however, that employs OptiPrep as a density gradient medium, with improved extraction and recovery of the eggs compared to the sucrose centrifugation technique. Also, we have built computerized methods t...

Paralysis modes of worms in drugs

The emergence of new drugs is often driven by the escalating resistance of parasites to existing drugs and the accessibility of more advanced technology platforms. Microfluidic devices have allowed for quicker testing of compounds, regulated sampling/sorting of entire animals, and automated behavioral pattern detection. In the majority of microfluidic devices, the effects of drugs on small animals (e.g. Caenorhabditis elegans)elegant are quantified by an endpoint, dose response curve that sho...

Modes of paralysis of worms in anthelmintic drugs

The emergence of new drugs is often driven by the escalating resistance of parasites to existing drugs and the accessibility of more advanced technology platforms. Microfluidic devices have allowed for quicker testing of compounds, regulated sampling/sorting of entire animals, and automated behavioral pattern detection. In the majority of microfluidic devices, the effects of drugs on small animals (e.g. Caenorhabditis elegans)elegant are quantified by an endpoint, dose response curve that sho...

Microfluidic Chip for Culturing Gene-Edited Bacteria

By utilizing a low-cost engineering tool, we have created a microfluidic platform to study bacteria at the single cell level, allowing us to unlock insights into microbial physiology and genetics that would otherwise not be possible. The platform is composed of 3D devices made of adhesive tapes, an agarose membrane as the resting substrate, a temperature-controlled environmental chamber, and an autofocusing module. With this technology, we have been able to observe Escherichia coli morphologi...

Wearable devices at Work

The effects of the workplace on the safety, health, and productivity of personnel can be seen at various levels. To protect and boost general worker health, innovative hardware and software tools have been developed for the detection, elimination, substitution, and regulation of occupational hazards. Wearable technologies make it possible for constant tracking of workers and their environment, whereas connected worker solutions provide contextual information and support for decision-making. H...

Video Capsule Endoscopy : A Review of Technologies

In this review, we focus on the hardware and software technologies used for the purpose of gastrointestinal tract monitoring in a safe and comfortable manner. We review the FDA guidelines for ingestible wireless telemetric medical devices, and the features incorporated in capsule systems such as microrobotics, closed-loop feedback, physiological sensing, nerve stimulation, sampling and delivery, panoramic imaging and rapid reading software. Both experimental and commercialized capsule systems...

Animal Behavior Sensing Electronics

We propose a remote monitoring device for measuring behavioral indicators like posture, gait, vocalization, and external temperature which can help in evaluating the health and welfare of pigs. The multiparameter electronic sensor board was tested in a laboratory and on animals. Machine learning algorithms and decision support tools can be used to detect lameness, lethargy, pain, injury, and distress. The roadmap for technology adoption, potential benefits, and further challenges are discusse...

Electrical field effects on micro-organisms

We present the NERV, a nonmechanical, unidirectional valve, to control the locomotion of Caenorhabditis elegant (C. elegans) in microfluidic devices. This valve is created by establishing a region of lateral electric field which can be toggled between on and off states. We observed that C. elegans do not prefer to advance into this region when the field lines are facing their movement, so when they reach the boundary of the NERV, they partway enter the field, retreat, and switch direction. We...


1 - 15 Of 49 Results