1 Riemann Integration 2
1.1 Partitions and Riemann sums . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.1 Definition (Partition P of size > 0) . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Definition (Selection of evaluations points zi) . . . . . . . . . . . . . . . . 2
1.1.3 Definition (Riemann sum for the function f(x)) . . . . . . . . . . . . . . 2
1.1.4 Definition (Integrability of the function f(x)) . . . . . . . . . . . . . . . 2
1.1.5 Definition (Notation for integrable functions) . . . . . . . . . . . . . . . . 3
1.2 Upper and Lower Riemann Sums . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.1 Definition (Mi and mi) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.2 Definition (Upper and Lower Riemann Sums) . . . . . . . . . . . . . . . 3
1.2.3 Definition (Integrability of f(x) in terms of L(f) and U(f)) . . . . . . . . 3
1.2.4 Example
1.2.5 Definition (Refinement of Partitions) . . . . . . . . . . . . . . . . . . . . 4
1.3 Properties of Upper and Lower Sums . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3.1 Theorem (Cauchy Criterion for Integrability in Terms of Upper and Lower
Sums) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 The Riemann Integral is Linear . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Further Properties of the Riemann Integral . . . . . . . . . . . . . . . . . . . . . 5
1.5.1 Theorem (Fundamental Theorem of Calculus) . . . . . . . . . . . . . . . 5
2 Preliminaries 6
2.1 Definition(An interval) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Definition(Length of Interval) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 Definition(- neighborhood of an Interval) . . . . . . . . . . . . . . . . . . . . . 6
2.5 Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.5.1 Definition(n-cell) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.5.2 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3 The Riemann Integral In n-Variables 7
3.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Upper and Lower Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2.1 Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2.2 Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3 Properties of Riemann Integral in n Variables . . . . . . . . . . . . . . . . . . . 9
3.4 Iterated Integrals and Multiple Integrals . . . . . . . . . . . . . . . . . . . . . . 9
3.4.1 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.4.2 Corollary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.4.3 Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4 Note
Ayadi, F. (2018). GROUP 3 RIEMANN NTEGRATION ON R^n. Afribary. Retrieved from https://afribary.com/works/group-3-riemann-ntegration-on-r-n
Ayadi, Fayowole "GROUP 3 RIEMANN NTEGRATION ON R^n" Afribary. Afribary, 29 Oct. 2018, https://afribary.com/works/group-3-riemann-ntegration-on-r-n. Accessed 15 Jan. 2025.
Ayadi, Fayowole . "GROUP 3 RIEMANN NTEGRATION ON R^n". Afribary, Afribary, 29 Oct. 2018. Web. 15 Jan. 2025. < https://afribary.com/works/group-3-riemann-ntegration-on-r-n >.
Ayadi, Fayowole . "GROUP 3 RIEMANN NTEGRATION ON R^n" Afribary (2018). Accessed January 15, 2025. https://afribary.com/works/group-3-riemann-ntegration-on-r-n