WALL CLIMBING ROBOT: MODEL DESIGN, LOGIC CONTROL AND MODEL SIMULATION

Abstract Industrial accidents are on the rise. This fact is even more prevalent in developing countries where the countries lack the safety standards required to ensure workplace safety in the pursuit of economic development. As land in prime locations becomes increasingly scarce, there is an argument for building skyscrapers. But this just creates a new workforce that are subject to the horrific dangers of cleaning glass panels at heights well above the ground. In this applied project, I designed a robot, Wall-C to take the pain of climbing to unfavourable heights and undertaking the incredibly dangerous tasks of cleaning sky-scrappers. Wall-C is a simple and affordable robot that works via linear actuation and vacuum pressure. Using a path planning algorithm that I designed and implemented, the robot climbs the glass wall, traverses the entire surface area with its wipers and descends once the glass is clean. Testing of Wall-C was two-fold. First, FEA analysis was performed on Wall-C and this revealed an entirely stable frame with a factor of safety of 8. The second assessment, a cleaning efficiency test, proved the robot could clean at a rate of 1731��%/s (or 6.228�%/h).